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The algebra describing a shock measure in the asymmetric simple exclusion 
model, seen from a second class particle, has finite-dimensional representations 
if and only if the asymmetry parameter p of the model and the left and right 
asymptotic densities p • of the shock satisfy [ ( ! - p)/p]" = p _ ( 1 - p + )/ 
p +(1 - p _ )  for some integer r >t 1; the minimal dimension of the representation 
is then 2r. These representations can be used to calculate correlation functions 
in the model. 
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1. I N T R O D U C T I O N  

In ref. 1 the measu re  descr ibing a shock  in the a symmet r i c  simple exclusion 
mode l  wi th  a symmet ry  p a r a m e t e r  p (1/2 < p ~< 1 ), seen f rom a second class 
part icle and  having  left and  r ight  a sympto t i c  densit ies p _  and  p+  
(0 ~< p _  < p + ~< 1), is der ived using a va r i an t  of  the "mat r ix  me thod" .  In 
this no te  we s tudy finite d imens iona l  represen ta t ions  of  the re levant  
algebraic  s tructure:  specifically, we seek l inear  ope ra to r s  D, E, and  A on a 
finite d imens i6na l  vec tor  space V, and  vectors  v in V and  w in the dual  
space to V, such tha t  

D E - x E D = ( 1 - x ) [ ( 1 - p + ) ( 1 - p _ )  D + p + p _ E ] ;  

D A  - x A D  = ( 1 - x )  p + p _ A ,  

A E -  x E A  = (1 - x)(1 - p  + )(1 - p _ ) A ;  

( l a )  
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(D + E ) v  = v, (D + E ) * w  = w; ( lc)  

(w, A v ) = l ;  ( ld)  

where x = ( 1 - p)/p.  For  the moment  we take x > 0 (p < 1 ), p_  > 0, and 
p + < 1; the remaining special cases will be discussed briefly later. We will 
show that finite dimensional representations exist if and only if 

x r = P - ( l - p + )  
p+(1 - - p _ )  (2) 

for some positive integer r, and that the minimal dimension of the represen- 
tation is then 2r. 

2. CONDITIONS FOR EXISTENCE OF FINITE D IMENSIONAL 
REPRESENTATIONS 

Suppose that V is a finite dimensional vector space and that the 
operators D, E, and A and vectors v and w satisfy (1). For  convenience we 
introduce the constants a = p + (1 - p _) and b = p _  (1 - p +) and the 
opera tors /~  = D - p _ p + a n d / ~  = E -  ( 1 - p _ )( 1 - p + ), which satisfy 

I~E#- xE#I~ = ( 1 - x)  ab. (3) 

Our  starting point is the treatment of ( la )  in ref. 2 (finite dimensional 
representations of ( la )  were also studied in ref. 3), where it is observed that 
s ince /5~  and ~'/~ have the same spectrum, (3) implies that if 2 is a point 
of this spectrum, then so is ab + x ( 2 -  ab). This in turn implies that the 
spectrum is the single point ab, so t h a t / ~  is invertible. The operator  

p =  E~- ab l~ - l, 

was then used in ref. 2 to study finite dimensional representations of ( la) .  
Here, where we must consider the operator A as well as D and E, these 
considerations lead us to observe that (1) may be replaced by 

I~P = xPl~, I~A = xAl~, A P  = xPA;  (4a) 

( G + P ) v = v ,  ( G + P ) * w = w ;  (4b) 

(w, Av) = 1; (4c) 

where G = / 5  + ab15- ~ - (a + b) L (Equat ion (4a) describes the quadratic 
algebra A 31~ (4)) 

X ~ 
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The space V may be decomposed as a direct sum 

v = G  v~, (5) 
yeZ" 

where ~r is the spectrum o f / )  and, for Y ~ S, Vr is the /)-invariant sub- 
space naturally associated with this eigenvalue: Vr = { v ~ V: (1) - 7I) k v = 0 
for some k >i 1 } (see, e.g., ref. 5). We choose an inner product in V in such 
a way that (5) is an orthogonal sum, and for u~ V let uy denote the 
orthogonal projection of u on Vy. The dual space to V may now be iden- 
tified with V itself. Note that (4a) implies that P and A map Vy to V~,x 
(with P and A vanishing on Vy if xy r  and that P* and A* map Vy 
to g~,/x. 

Since the decomposition (5) reduces the operator G, (4b) implies that 

Gvy = -Pvy/x  and G*w~, = - P * w y x  (6) 

(with the convention that vy=O if y r Z'). It follows that if v~ ~-0 then either 
vy/x 4= 0 or Gvy = 0; because the unique eigenvalue of G in V~ is y + a b / y -  
a - b ,  the latter is possible only if y = a or y -  b. We conclude that vy can 
be nonzero only if y = a x  k or y = bx k for some k >i 0. Similarly, wy can be 
nonzero only if y = b / x  j or y = a / x  j for some j~>0. Because (5) is an 
orthogonal sum, (4c) implies that ax k +~= b/x j for some k and L i.e. (2) 
must hold for r = j + k + 1. 

We will prove that the dimension of V is at least 2r by showing that 
the vectors 

I)a~ Dax~... ~ I)axr-I~ Wb/xr-I~...~ Wb/x~ W b (7) 

are nonzero and pairwise orthogonal. It is convenient to introduce a func- 
tional calculus for a restricted set of functions: for an invertible operator O 
on V and a function of the form f ( z ) = z - " q ( z ) ,  with n a nonnegative 
integer and q a polynomial, f ( O ) =  O-"q(O).  The mapping f F-~f(O) is 
linear and multiplicative, and f ( O ) = 0  if f has a zero of sufficiently high 
order at all eigenvalues of O. 

From (4a) it follows that f ( l ~ )A  =Af(xl.~) and f ( 1 ) ) P = P f ( x l ~ )  for 
any f and hence, again using (4a), that 

Af(1})e= xPf(z~)a. (8) 

The operator G defined above is g(/~), with g(z )=  z + abz -~ - ( a  + b). Let 
h(z) be a polynomial vanishing to high order at z -  a and z = b, and agree- 
ing with -1 /g (z )  to high order at other points of Z', and let H=h( /}) ,  
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so that G H =  HG acts as the negative of the identity on V r if y 4:a, b. 
H ' P *  for k 1 r 1 Then From (6), v,,x,, =HPv,,,,,,-, and Wb/xk = Wb/xk-' = ,..., -- �9 

i f0~<k~<r--2,  from (8), 

(Wblxr-k-I, .,'dtl3axk) --(H*P*Wb/xr_k_2, AUaxk ) 

-" (Wblxr_k_2 , PHAva.,,k) 

= X-l(Wb/..,r-k-2, AHPv,,xk) 

=X-t(Wbl..,,-k-2, Av,,xk+,). (9) 

NOW (4c) implies that (Wb/xr-k-,,Av,,.,.k)~O for some k with 0~<k ~<r -1 ,  
and then (9) implies that this holds for all such k, and hence all the vectors 
in (7) are nonzero. 

Finally, ~ve claim that 

(f ,( /))* Wb/.,,-k, fz(1)) Uax I') "-" 0 (10) 

for any functions f i ,  f2 and any k, 1 ~<k ~<r -1 ;  (10) for f~ = f : =  1, 
together with the orthogonality of V, xk and V, xJ for k 4: j, implies that the 
vectors of (7) are pairwise orthogonal. For k = 1,..., r - 1 ,  

(f,(/~)* Wb/xr-k, fz(/~) V~.,.k) 

= (fl( /))* wo/.,,r-k, f2(1)) HPv,,xk-,) 

= ( f , ( x i ) ) *  Wblxr-k, f2(xl~) h(xl))  v,,,,k-,) 

= - ( f , ( x l ) ) *  G*Wb/xr-k+,, f2(XI~) h(xl.)) Uaxk-, ). (11) 

For k =  1, (11) vanishes because Gv,,=O by (6); for k >  1 it vanishes by 
induction. This verifies the claim and completes the proof that the elements 
of (7) are linearly independent. 

3. REPRESENTATIONS OF M I N I M A L  DEGREE 

The above considerations lead, for any r, to the construction of a 
representation with the minimal dimension 2r. In the representation we 
construct the operator D and hence G and H will be diagonal, so that from 
(6), v~, is proportional to P%,, and Wb#,k to (p , )k  Wb. We normalize the 
inner product so that the vectors P%,, and (P*)k W b, k = 0,..., r -  1, form an 
orthonormal basis. Taking these as the standard basis in R 2r, we may 
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represent  the ope ra to r s  as matr ices,  using a b lock  decompos i t i on  into r x r 
blocks: 

o] o] io Ool J )  --- 0 /)22 ' P - "  0 p22 , and  A = t , (12) 

wi th  

)11 

a a x  

a x  1)22 __ a x 2  

�9 �9 

a x r  - 1 b 

0 

p i t  = p 2 2  _ .  1 0 
" . , " , 

1 0 

and  

,4 21 

1 

X 

~ ~ o 

X r -  1 

Finally, w = [ 0 W 2 ] and  v = [ v, o ], wi th  

w: = Z - * [ x ~ _ ,  "'" x~ Xo], V ! = Z  - 1  

K0 

KI 

/~r-- 1 

where  x k =  1--lk= 1 g(axi )  - l  (with Xo = 1) and  Z =  [ / ( r - - ! (  1 - xr ) / (1  - - x ) ]  1/2. 

4. THE TOTALLY A S Y M M E T R I C  CASE 

It can  be verified by the m e t h o d s  above  tha t  when  x = 0  or  b = O  
( p _  = 0  or  p + = 1), finite d imens iona l  represen ta t ions  exist if and  only if 
x = b = O. The  represen ta t ion  of  min imal  d imens ion  is the two d imens iona l  
r epresen ta t ion  found  above  and  in ref. 1. 



174 Speer 

5. ASYMPTOTIC BEHAVIOR OF THE PROFILE 

The rate of decay of correlations in the shock measure is governed by 
the eigenvalues of D + E =  I - G  other than 1; for simplicity we discuss 
only the decay of ( T , ) =  (w, A ( D  + E)  " - l  Dr) ,  the density n sites in front 
of the second class particle, to its asymptotic value p +. The eigenvalues of 
I -  G are 1 and 

2k = 1 -- g ( a x  k) = 1 -- a -- b + a x  k + b / x  k, k = 1,..., r -  1. 

Since 2k = 2r--k, each of these eigenvalues, other than 1 and 2r/2 for r even, 
is doubly degenerate in each of the two r x r blocks in (12). The explicit 
formulae above f o r / )  and P show that there is only one eigenvector in 
each block, however, so that 

<z',,~>=p++ ~ [=k+(n--l)flk]2"k--', 
l<<.k<.r/2 

for constants ~k, flk with ~r/2--0 when r is even. We discuss in more detail 
the cases r = 1, 2, and 3: 

r =  1; x = b / a .  The finite dimensional representation in this case is 
discussed in ref. 1. The shock measure is Bernoulli, with no correlations, 
and ( ~ , )  = p + for all n. 

r = 2; x 2 =  b/a. It was shown in ref. 1 that the model exhibits distinct 
forms of leading asymptotic behavior in the two regions x 2 >  b/a and 
x2<  b/a; the behavior on the surface separating these regions was not dis- 
cussed. This is precisely the surface on which the four dimensional 
representation given above applies. It yields the exact result 

n - - I  x(1 x) a21 . 
<r,,> = p + -  1 + x  

r = 3 ;  x 3 = b / a .  

for all n. 
In this case the asymptotic formula of ref. 1 is exact: 

(r.) = p +  - 
x2( 1 -- x) 3 ( 1 + x )  a2(n _ 1 ) 2 ~ -  2 _ x (  1 - x )  a2"~- l 

1 + x + x  2 
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